Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Glob Chall ; : 2200001, 2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-2074050

ABSTRACT

Maintaining an ample supply of personal protective equipment continues to be a challenge for the healthcare industry, especially during emergency situations and times of strain on the supply chain. Most critically, healthcare workers exposed to potential airborne hazards require sufficient respiratory protection. Respirators are the only type of personal protective equipment able to provide adequate respiratory protection. However, their ability to shield hazards depends on design, material, proper fit, and environmental conditions. As a result, not all respirators may be adequate for all scenarios. Additionally, factors including user comfort, ease of use, and cost contribute to respirator effectiveness. Therefore, a careful consideration of these parameters is essential for ensuring respiratory protection for those working in the healthcare industry. Here respirator design and material characteristics are reviewed, as well as properties of airborne hazards and potential filtration mechanisms, regulatory standards of governmental agencies, respirator efficacy in the clinical setting, attitude of healthcare personnel toward respiratory protection, and environmental and economic considerations of respirator manufacturing and distribution.

2.
ACS Pharmacol Transl Sci ; 3(6): 1076-1082, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-1065796

ABSTRACT

N95 filtering facepiece respirators (FFR) and surgical masks are essential in reducing airborne disease transmission, particularly during the COVID-19 pandemic. However, currently available FFR's and masks have major limitations, including masking facial features, waste, and integrity after decontamination. In a multi-institutional trial, we evaluated a transparent, elastomeric, adaptable, long-lasting (TEAL) respirator to evaluate success of qualitative fit test with user experience and biometric evaluation of temperature, respiratory rate, and fit of respirator using a novel sensor. There was a 100% successful fit test among participants, with feedback demonstrating excellent or good fit (90% of participants), breathability (77.5%), and filter exchange (95%). Biometric testing demonstrated significant differences between exhalation and inhalation pressures among a poorly fitting respirator, well-fitting respirator, and the occlusion of one filter of the respirator. We have designed and evaluated a transparent elastomeric respirator and a novel biometric feedback system that could be implemented in the hospital setting.

3.
BMJ Open ; 10(7): e039120, 2020 07 07.
Article in English | MEDLINE | ID: covidwho-639452

ABSTRACT

OBJECTIVE: To develop and test a new reusable, sterilisable N95 filtering facepiece respirator (FFR)-comparable face mask, known as the Injection Molded Autoclavable, Scalable, Conformable (iMASC) system, given the dire need for personal protective equipment within healthcare settings during the COVID-19 pandemic. DESIGN: Single-arm feasibility study. SETTING: Emergency department and outpatient oncology clinic. PARTICIPANTS: Healthcare workers who have previously undergone N95 fit testing. INTERVENTIONS: Fit testing of new iMASC system. PRIMARY AND SECONDARY OUTCOME MEASURES: Primary outcome is success of fit testing using an Occupational Safety and Health Administration (OSHA)-approved testing method, and secondary outcomes are user experience with fit, breathability and filter replacement. RESULTS: Twenty-four subjects were recruited to undergo fit testing, and the average age of subjects was 41 years (range of 21-65 years) with an average body mass index of 26.5 kg/m2. The breakdown of participants by profession was 46% nurses (n=11), 21% attending physicians (n=5), 21% resident physicians (n=5) and 12% technicians (n=3). Of these participants, four did not perform the fit testing due to the inability to detect saccharin solution on premask placement sensitivity test, lack of time and inability to place mask over hair. All participants (n=20) who performed the fit test were successfully fitted for the iMASC system using an OSHA-approved testing method. User experience with the iMASC system, as evaluated using a Likert scale with a score of 1 indicating excellent and a score of 5 indicating very poor, demonstrated an average fit score of 1.75, breathability of 1.6, and ease of replacing the filter on the mask was scored on average as 2.05. CONCLUSIONS: The iMASC system was shown to successfully fit multiple different face sizes and shapes using an OSHA-approved testing method. These data support further certification testing needed for use in the healthcare setting.


Subject(s)
Coronavirus Infections/prevention & control , Equipment Design , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices , Silicone Elastomers , Adult , Aged , Allied Health Personnel , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Equipment Reuse , Feasibility Studies , Female , Humans , Male , Middle Aged , Nurses , Physicians , Pneumonia, Viral/transmission , Prospective Studies , SARS-CoV-2 , Sterilization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL